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Introduction
What are industrial control systems?

Industrial control systems (ICS) is an encompassing term for several
control systems and instrumentation used in industrial production.1

They are used to control cyber-physical systems, such as sensors,
actuators, motors and more.

ICS have taken over the responsibilities of older analog systems.

1Industrial control systems, [Online]. Available:
https://en.wikipedia.org/wiki/Industrial_control_system.
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Purpose and requirements

The main purpose of an ICS is to keep an industrial plant up and
running as autonomously as possible.

In Industrial Processes one of the main considerations is availability
and reliability of the systems, such that uptime is maximized.
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Design

Simple hardware and simple protocols designed for high uptime, but
no security.

Multiple networks in a single ICS.
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ICS - an overview2

2Scada schematic overview, [Online]. Available: ’https:
//upload.wikimedia.org/wikipedia/commons/0/0c/SCADA_schematic_overview-

s.svg’.
K. Olsson, S. Finnsson (Chalmers University of Technology)The Process Matters: Ensuring Data Veracity in Cyber-Physical SystemsDAT300, 6. Oct 2016 8 / 36

'https://upload.wikimedia.org/wikipedia/commons/0/0c/SCADA_schematic_overview-s.svg'
'https://upload.wikimedia.org/wikipedia/commons/0/0c/SCADA_schematic_overview-s.svg'
'https://upload.wikimedia.org/wikipedia/commons/0/0c/SCADA_schematic_overview-s.svg'


Summary of ICS

Large number of communicating devices

Low inherent security
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Network level attacks

It is possible to attack the IT infrastructure used by the ICS resulting
in loss of availability or malicious interference with the process.

Well known mitigation techniques exist. Firewalls, intrusion detection
systems and so on.

Have we then solved the problem of securing industrial control
systems?
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Process level attacks

Attacking the physical process that the ICS controls.

The process often has to interpret unmeasured quantities. E.g.
change in pressure might be the result of temperature, flow or
reaction speed.

Non monitored equipment and processes can be used to influence
other process.
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Sensor level attacks

In process automation sensors are considered fully trusted devices and
the data they produce is trusted without further validation.

Sensors are often closest to the physical process and sometimes the
only way to monitor the process.

Veracity: The property that an assertion truthfully reflects the aspect
it makes a statement about.

A traditional network security approach is ineffective against these
kind of attacks.
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Sensor Signal Spoofing

Sensor signal spoofing is not straightforward.

It is necessary to mimic the behaviour of the real sensor.

”Record-and-Playback”.

Runs Analysis, designing noise that is believable to the human
operator.

Triangle Approximation, Creating believable dynamic process
behaviour.
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Runs Analysis
The algorithm

In a sequence of consecutive samples from a sensor, count the
number of increasing or decreasing values (”runs up”, ”runs down”)

Count the distance travelled for each of those runs, up or down. Each
run can be characterized by number of consecutive
increasing/decreasing values and the distance travelled.

Example:
[33.47 34.73 37.77]→ (+3, 4.3)

The average distance travelled by each length of run can then be
represented by a single distribution.

Can be optimized, requires about 400 bytes of memory for combined
code and data.
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Triangle Approximation I
The algorithm

1 Declare a vertex at the first value.

2 Choose an arbitrary starting window of size n. Signal smoothing
factor s = log n.

3 Note minimum and maximum values of the window.

4 Draw a vertical line at sample n. Then draw two lines from the
vertex, one through the minimum value and one through the
maximum value, ending at the vertical line.

5 Declare a vertex at the midpoint of the vertical line at sample n.

6 Start drawing a triangle from the vertex on the vertical line.

7 Count the number of samples above (y) and below (z) the triangle.

8 When the number of samples above or below the triangle is above the
threshold, y or z > s, draw a vertical line through the current sample
and declare a vertex at the midpoint.
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Triangle Approximation II
The algorithm

9 If y < z, increase the slope of the top line and decrease the slope of
the bottom line. If y > z do the opposite.

10 If the number of samples between the current sample and the last
vertex is < 4n, increase n.

11 If no new vertex is created within 4n samples, declare a vertex at the
midpoint of the vertical line through the sample and decrease n.

12 Go to step 6.
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Network level attacks are well understood and can be combated with
classic network security techniques.

Process level attacks are hard to detect and can be devastating due
to their nature.

Sensor level attacks are feasible and hard to detect with traditional
network security techniques as the sensor traffic looks normal.

Run analysis and Triangle approximation can be used to spoof
realistic dynamic sensor values making it hard for humans to detect.
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Tennessee Eastman - General facts

Model of an industrial chemical process3

Complex model

4 reactants −→ 2 products
41 measurements
12 adjustable variables

3J. Downs and E. Vogel, “A plant-wide industrial process control problem,”
Computers & Chemical Engineering, vol. 17, no. 3, pp. 245–255, 1993. doi:
http://www.sciencedirect.com/science/article/pii/009813549380018I.
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An illustration4

4J. Downs and E. Vogel, “A plant-wide industrial process control problem,”
Computers & Chemical Engineering, vol. 17, no. 3, pp. 245–255, 1993. doi:
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Approach: Information theory

Entropy: Randomness of information measured

For a discrete random variable X, with possible outcomes (values)
{x1, . . . , xn}, the entropy H(X) is given by:

H(X) =
n∑

i=1

P (xi ) · log a

(
1

P (xi )

)
, where P (xi ) is the probability of symbol xi occuring.
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Data: Need for discretization

TE process model:

Double-precision floating point format
For each exponent: approximately 1016 variations
Remember the definition of entropy:

H(X) =
n∑

i=1

P (xi ) · log 2

(
1

P (xi )

)

n� 1016 ⇒ P (X) ∼ Uniform
Each simulation would result in identical entropy
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Data: Need for discretization

Method: Binning, but . . .

. . . limited amount of bins would result in excessive number of
mapping collisions

Solution: quantize without limiting number of bins.
For all z ∈ R : b|z|c = x ∈ N0, and b10 · (|z| − x)c = y ∈ N0, then
f (z) ∈ Z is defined as

f (z) =


− (10 · x+ y) , for z < 0

0, for z = 0

(10 · x+ y), for z > 0
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Entropy: Sensor-specific, plant-wide and cluster-based

Sensor-specific and plant-wide entropy

Sensor-specific entropy (se) is calculated for one particular sensor over
a period of time (n number of samples). Plant-wise entropy (pwe) on
the other hand is calculated at a given sample time for all sensors (n
number of sensors) simultaneously. The combined entropy matrix looks
like this:

s1 s2 s3 s4 . . . sn
t1 • • s3 • • • pwe1
t2 • • s3 • • • pwe2
t3 • • s3 • • • pwe3
... • • s3 • • •

...
tn • • s3 • • • pwen

se0 se1 se2 se3 . . . sen
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Entropy: Sensor-specific, plant-wide and cluster-based
(continued)

Sensor-specific and plant-wide entropy

Plant-wide entropy can effectively detect anomalies that affect multiple
sensor measurements simultaneously. However, it cannot specify from
which sensor(s) the disturbance originates.

Entropy for a specific sensor is calculated so that the affected sensor
can be located. However, if the attacker is able to spoof the signal,
sensor-specific entropy is rendered useless.
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Entropy: Cluster-based

Notion: calculate entropy in clusters based on sensor correlation ρ

ρ =
cov (X,Y )

σX · σY
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Entropy: Cluster-based (continued)

Consider ρ between each of the 41 measurements from the TE model.

The resulting matrix can be considered an adjacency graph with
weighted edges.
Cluster graph with respect to edge weights (correlation between
measurements)
Graph partitioning software METIS5 used for initial clustering.
Deciding number of clusters challenging - for TE process ≈ 10− 13
Time-window (period over which entropy was calculated) set to 45
minutes (75 samples) and smoothing of the sensor signals applied. At
first non-overlapping time-windows used - resulting in poor detecting
capabilities for weakly correlated sensors. Also large variation in
entropy outside attack-window.
To solve these weaknesses a sliding time-window was used to
calculate the entropy. Downside is a delay for the uncorrelated
samples to dominate entropy.

5Metis - family of graph and hypergraph partitioning software, [Online]. Available:
https://http://glaros.dtc.umn.edu/gkhome/views/metis.
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Simulated results

Ability to detect attacks

Can effectively detect questionable veracity in changes to the data

Still able to detect anomalies when the attacker has knowledge of the
sensor clustering

Complexities not fully resolved

Wrongful inclusion of sensor in cluster produces false positive alarms.
If cluster consists of similar signals (type and scale), spoofing all of
them using just one signal will result in cluster that is both plausible
and correlated. Important to form clusters from signals of different
types and scales.
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Summary

ICS systems are often legacy system that require high uptime. This
gives rise to outdated and vulnerable hardware, protocols and system
design.

Sensor noise and Dynamic process behaviour can be believably
spoofed

Tennessee Eastman process is useful as a testbed

Entropy- and cluster-based detection is a viable approach.
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